# Go to a working directory
$ python3.9 -m venv act1
$ source act1/bin/activate
$ cd act1 && mkdir src && cd src
$ pip install dbt-duckdb # dbt-snowflake
dbt-core
fork and dbt-fal
adapter# Install dbt-core fork
$ git clone <https://github.com/fal-ai/dbt-core.git>
$ cd dbt-core
$ git checkout act1
$ pip install -r dev-requirements.txt -r editable-requirements.txt
# Install dbt-fal
$ cd ..
$ git clone <https://github.com/fal-ai/fal.git>
$ cd fal
$ git checkout act1
# Install fal
$ pip install -e .
# Install dbt-fal
$ pip install -e "./adapter" # "./adapter[snowflake]" to run Snowflake
profiles.yml
$ vi ~/.dbt/profiles.yml
# Add a new output to the jaffle_shop profile and set it as the target
jaffle_shop:
target: dev_with_fal
outputs:
# ...
dev_with_fal:
type: duckdb
path: "/Users/{YOUR_USERNAME}/duck_db_dbt_dump.db"
# path has to be absolute, and the folder needs to exist
python_adapter:
type: fal
jaffle_shop_with_fal
$ cd ..
$ git clone <https://github.com/fal-ai/jaffle_shop_with_fal.git>
$ cd jaffle_shop_with_fal
$ git checkout act1
<aside>
❗ At this point, make sure you are using the correct dbt version to ensure you are on 1.3.0b2 by dbt --version
</aside>
dbt seed
and dbt run
$ dbt seed
$ dbt run
<aside>
❗ At this point, you will most likely get an error because you don’t have prophet
installed yet. With dbt-fal, you dont have to manage your environments! Let’s look at how fal environments work:
</aside>
fal_project.yml
and use it in your model!